Food Insecurity in America

2 Which communities are at risk for food
Help ln a S ' Q A_P insecurity during COVID? I use a

predictive model to determine areas at risk.



What do food msecurity community characteristics look like?

“ | got data from the USDA SNAP program
consisting of over 400k records of 800
features. Each record was an application

* I wanted to use a 10 year gap analysis by
comparing 2007 and 2017 in my final
predictive model.

* My target was a field called “CAT_ELIG”
meaning out of all the applications received:

* 1 = Eligible for benefits
* 0 = Not eligible for benetfits.




Narrowing down the data: GIS

* These two purple circles
represent areas that are
emerging hot and cold
spots of SNAP
dependency found from

an ArcGIS MOOC on
Spatial Analysis.
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The “hot spot” is San Juan
County, New Mexico.

* The “cold spot” is Cherry
County, Nebraska.

* This narrowed the focus
to Nebraska and New
Mexico in 2007 and 2017
for the extremes of SNAP
characteristics.
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Application Counts in QC* Data

*QC data means only “complete” applications

NUMBER OF PEOPLE ON SNAP: 42.1 MILLION*
2007 2017
18,524,000 are children.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" /,\
7 5,473,000 arc older adults.
All: 47k All: 45k 1 ‘
L. 4,210,000 have disabilities.
New Mexico: 1255 New Mexico: 964 3,368,000 are ABAWDS.
Nebr as ka: 791 Nebr as ka: 894 I ABAWD = Able-Bodied Adults Without Dependents, who are subject to work requirements.
Children and older adult numbers overlap with disability numbers.

New Mexico is vulnerable to wild swings in the economy,
whereas Nebraska stays pretty consistent.



Iniaal Snapshot of the Data

+ Most initial data shows no real trends of who
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Narrowing down the data: High Nullity

“ Most of the data had a high degree of nulls to them. So I broke the nulls into three points:
1. Remove columns with ALL null values.
2. Then drop columns with more than 50% nulls.

* According to a paper called “The proportion of missing data should not be used to guide
decisions on multiple imputation”, the authors test and conclude that the value of the
data is more important than the amount of missing information.

3. Lastly, I imputed nulls with the mean for the remainder using sklearn Simple Imputer.
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Narrowing down the data: Correlations

There are 32 features

# 2007 had a mix of eligible and not eligible applications for these two states, while 2017 did not.

Therefore, a correlation to the target variable could only be run on 2007. { CERTHMSZ"
¢, B ° ° ° ° ° . FSDIS . ’
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Interestng Snapshots of the Data

1. New Mexico saw about 100 LESS working poor on SNAP in 2017. While Nebraska saw about 50 MORE in 2017.

2. In 2007, SNAP recipients were receiving less assistance from other welfare programs than in 2017.
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The model

+ ] ran a number of different models. Random Forest and Gradient Boost

performed the best.

“ My feature selection process reduced enough noise to show only slight
overfitting.

* T added a PCA component to the test, and it greatly reduced the accuracy scores of all tests, thus
supporting my feature selection was just right.

* I added a Bagging Classifier to further reduce the overfitting.



* Initial model test comparison

name
LogReg
Decision Tree
Random Forest
Gradient Boost
Ada Boost

SVC

Naive Bayes

0.884334
0.907760
0.942533
0.940337
0.922035
0.884700
0.767204

cross_val_train cross_val_test

0.862628
0.913823
0.934300
0.927474
0.920648
0.854949
0.741468

0.900262
0.943570
0.965879
0.950131
0.937008
0.901575
0.833333

test_recall test_precision

0.903821
0.941099
0.955844
0.961487
0.939474
0.928378
0.908441

The model

Final Model:
Voting Classifier with

Random Forest, Gradient Boost, and Bagging
Classifier

CV best score: 95%

Interestingly, the best parameters indicated no bootstrapping on Random Forest, but yes
to bootstrapping in the Bagging Classifier.

Also, the Bagging Classifier increased my recall and precision scores to 95%.



Random Forest range of Coefficients Effect on SNAP
(the larger the range, the more impact on predicting SNAP)
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Model Coetticients

The top 15
impactful features:
“ | chose the models to test because I wanted an feature it
interpretable model. 0 FSSLTDED 022

SHELDED 0.20
FSTOTDED 0.12

* Random Forest uses sklearn.treeinterpreter to rate the
impact of features on model prediction.

1

2

3 FSSTDDE2 0.08
4 HWGT 0.08
5 CERTHHSZ 0.06
6
7
8
9

* The top 4 variables deal with shelter and FSTANF 008
FSUNEARN 0.06

hOIIlElESSIIQSSi LIQRESOR 0.04
RAWNET 0.04

FSSLTDED and SHELDED are indicators of how much someone is 10  FSASSET 0.04
paying for their home. 11 TANFIND 0.04

12 FSUSIZE 0.04

FSTOTDED & FSSTDDE2 are deductions relating to housing. 13 VEHICLEA 0.02

14 FSSSI  0.02



Yes
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Next Steps...

“ A geographic analysis that consists of access to housing resources such as
HUD (which has a GIS page), food pantries and counties showing high levels
of SNAP dependency. This would pinpoint areas where assistant could be
targeted. Especially during COVID, targeting high need areas would be
good way to direct tight resources.

* I would also add economic factors such as technologies in the area to see if it
relates to swings in housing.

* Post this final analysis to an interactive dashboard for governments,
charitable organizations and community activists.



