

Food Insecurity in America

Help in a SNAP

Which communities are at risk for food insecurity during COVID? I use a predictive model to determine areas at risk.

What do food insecurity community characteristics look like?

- * I got data from the USDA SNAP program consisting of over 400k records of 800 features. Each record was an application
- * I wanted to use a 10 year gap analysis by comparing 2007 and 2017 in my final predictive model.
- * My target was a field called "CAT_ELIG" meaning out of all the applications received:
 - * 1 = Eligible for benefits
 - * 0 = Not eligible for benefits.

Narrowing down the data: GIS

- These two purple circles represent areas that are emerging hot and cold spots of SNAP dependency found from an ArcGIS MOOC on Spatial Analysis.
- The "hot spot" is San Juan County, New Mexico.
- The "cold spot" is Cherry County, Nebraska.
- This narrowed the focus to Nebraska and New Mexico in 2007 and 2017 for the extremes of SNAP characteristics.

* New Mexico is vulnerable to wild swings in the economy, whereas Nebraska stays pretty consistent.

THE SUPPLEMENTAL NUTRITION ASSISTANCE PROGRAM

2017 NATIONAL

NUMBER OF PEOPLE ON SNAP: 42.1 MILLION*

18,524,000 are children.

5,473,000 are older adults.

4,210,000 have disabilities.

3,368,000 are ABAWDS.

ABAWD = Able-Bodied Adults Without Dependents, who are subject to work requirements. Children and older adult numbers overlap with disability numbers.

Initial Snapshot of the Data

* Most initial data shows no real trends of who applies for SNAP benefits.

* Note: this is before nulls are removed.

Narrowing down the data: High Nullity

- * Most of the data had a high degree of nulls to them. So I broke the nulls into three points:
 - 1. Remove columns with ALL null values.
 - 2. Then drop columns with more than 50% nulls.
 - data is more important than the amount of missing information.

* According to a paper called "The proportion of missing data should not be used to guide decisions on multiple imputation", the authors test and conclude that the value of the

3. Lastly, I imputed nulls with the mean for the remainder using sklearn Simple Imputer.

We are left with a quarter of the original columns (red line shows the quarter mark of the original column mean count)

Dataset

Narrowing down the data: Correlations

- * 2007 had a mix of eligible and not eligible applications for these two states, while 2017 did not. Therefore, a correlation to the target variable could only be run on 2007.
- * The technical document included 6 sections of observations. My final dataset was the top 5 correlated features per section as a final set of columns. Ending in 32 features + the target column.

2007 New Mexico Correlations (Ascending)

There	are	32	fe
{'CERT	THHSZ	z',	
'FSAS	SET	,	
'FSD1	s',	-	
'FSEA	ARN',	,	
'FSER	NDE2	2',	
'FSER	NDED)',	
'FSGA	۱',		
'FSGF	RINC	۰,	
'FSNE	LDEF	ξ' ,	
'FSNE	TIN	c',	
'FSN0	NCIT	Γ',	
'FSSL	TDE2	2',	
'FSSL	TDE)',	
'FSSS	5I',		
'FSST	DDE2	2',	
'FSTA	WF',	,	
'FST0)TDE2	2',	
'FST0)TDE)',	
'FSUN	IEARN	ι',	
'FSUS	SIZE	۰,	
'FSVE	HAST	Γ',	
'FSWA	GES	۰,	
' HWGT	r',		
'LIQF	RESOF	۲',	
'RAWE	RND	۰,	
'RAWN	IEΤ',	,	
'REAL	PROF	°',	
'SHEL	DED	',	
'TANF	INI_)',	
'TP0\	ľ,		
'VEH1	CLE/	ι',	
'WRK_	_P00F	≀' }	

'he mode

- * I ran a number of different models. Random Forest and Gradient Boost performed the best.
- * My feature selection process reduced enough noise to show only slight overfitting.
 - supporting my feature selection was just right.
- * I added a Bagging Classifier to further reduce the overfitting.

I added a PCA component to the test, and it greatly reduced the accuracy scores of all tests, thus

The mode

* Initial model test comparison

	cross_val_train	cross_val_test	test_recall	test_precision
name				
LogReg	0.884334	0.862628	0.900262	0.903821
Decision Tree	0.907760	0.913823	0.943570	0.941099
Random Forest	0.942533	0.934300	0.965879	0.955844
Gradient Boost	0.940337	0.927474	0.950131	0.961487
Ada Boost	0.922035	0.920648	0.937008	0.939474
SVC	0.884700	0.854949	0.901575	0.928378
Naive Bayes	0.767204	0.741468	0.833333	0.908441

Final Model: Voting Classifier with Random Forest, Gradient Boost, and Bagging Classifier

CV best score: 95%

Interestingly, the best parameters indicated no bootstrapping on Random Forest, but yes to bootstrapping in the Bagging Classifier.

Also, the Bagging Classifier increased my recall and precision scores to 95%.

Random Forest range of Coefficients Effect on SNAP (the larger the range, the more impact on predicting SNAP)

Model Coefficients

- * I chose the models to test because I wanted an interpretable model.
- * Random Forest uses *sklearn.treeinterpreter* to rate the impact of features on model prediction.
- * The top 4 variables deal with shelter and homelessness:
 - FSSLTDED and SHELDED are indicators of how much someone is paying for their home.
 - * FSTOTDED & FSSTDDE2 are deductions relating to housing.

The top 15 impactful features:

	feature	diff
0	FSSLTDED	0.22
1	SHELDED	0.20
2	FSTOTDED	0.12
3	FSSTDDE2	0.08
4	HWGT	0.08
5	CERTHHSZ	0.06
6	FSTANF	0.06
7	FSUNEARN	0.06
8	LIQRESOR	0.04
9	RAWNET	0.04
10	FSASSET	0.04
11	TANF_IND	0.04
12	FSUSIZE	0.04
13	VEHICLEA	0.02
14	FSSSI	0.02

2018 Predicted SNAP Participants by State

Next Steps...

- good way to direct tight resources.
- relates to swings in housing.
- * Post this final analysis to an interactive dashboard for governments, charitable organizations and community activists.

* A geographic analysis that consists of access to housing resources such as HUD (which has a GIS page), food pantries and counties showing high levels of SNAP dependency. This would pinpoint areas where assistant could be targeted. Especially during COVID, targeting high need areas would be

* I would also add economic factors such as technologies in the area to see if it

